Master degree programme in
Data Science and Business Informatics
(2 years, 120 ECTS)

Study plan rules (“Regolamento”) and students’ guide
Starting from Academic Year 2021/22

Contact for information
datascience@di.unipi.it

Web site
https://www.di.unipi.it/en/education/mds

Last update: 31 August 2021
Preamble

The two years Master degree programme *Data Science and Business Informatics* is designed to prepare graduates both to master the information technologies and to understand the needs of organizations with a specific training in *Business Intelligence* and *Data Science* for decision support.

Most of the courses of the Data Science and Business Informatics degree are taught in English. A few courses are taught in *Italian*, namely those marked with an asterisk in this document. For international students, the study plan will be entirely taught in English. For Italian students, they must have a sufficient knowledge of English at enrollment time, at least at B2 level.

The master programme requires a solid background, high motivation, and hard working attitude. Concept abstraction, problem solving, formal modeling, mathematical reasoning, and basic concepts on computer programming and databases are essential characteristics that you should possess. Students shall not underestimate this advice: statistics on students’ careers show that 1/5 of students gives no exam during the first year, and 1/4 withdraw within the first year.

The assessment of a course consists usually of a written and an oral exam. In the written exam, the student must demonstrate the use of knowledge of the course contents to solve problems. During the oral exam the student must be able to demonstrate knowledge of the course contents and be able to discuss the topics thoughtfully and with propriety of expression.

Attendance at courses is not mandatory. Part-time students, however, experience lower success rates in exams and longer time to graduate. We greatly recommend students to regularly attend lectures and to complete the courses each semester.

Our graduates are highly sought after in the job market. Not only statistics show that 100% of graduates are hired within one year from graduation, but also that they are assigned a responsibility role. This is the reward for their commitment and motivation.
Contents

1 Objectives and admission .. 7
 1.1 Objectives of the study program 7
 1.2 Admission requirements 8
 1.3 Pre-requisites ... 8

2 Program overview .. 9
 2.1 Study program ... 9
 2.2 Precedences ... 12
 2.3 Study plan ... 12

A Courses in English for AY 2021/22 15
 A.1 Compulsory subjects 15
 Business process modeling (295AA) 15
 Data mining (420AA) 16
 Decision support databases (662AA) 17
 Laboratory of data science (664AA) 18
 Logistics (255AA) .. 19
 A.2 Elective subjects from the GR1 group 20
 Advanced databases (641AA) 20
 Big data analytics (599AA) 21
 Distributed data analysis and mining (687AA) 22
 Information retrieval (289AA) 23
 Machine learning (654AA) 24
 Programmatic advertising (634AA) 25
 Social network analysis (668AA) 26
 Technologies for web marketing (537AA) 27
 Text analytics (635AA) 28
 Visual analytics (602AA) 29
 A.3 Elective subjects from the GR2 group 30
 Fundamentals of business management (627PP) 30
 Legal issues in data science (38TN) 31
Management practice (629PP) .. 32
Model-driven decision-making methods (666AA) 33
Project design & management for data science (1075I) 34
Statistics for data science (628PP) 35
Strategic and competitive intelligence (787II) 36
A.4 Elective subjects from the GR3 group 37
Algorithms and data structures for data science (751AA) 37
Databases (765AA) ... 38
Programming for data science (667AA) 39
A.5 Elective subjects from the Table 2.4 group 40

B Corsi in Italiano per l’AA 2021/22 41
B.1 Attività formative a scelta del gruppo GR2 41
 Analisi e gestione dei costi (265PP) 41
 Decisioni in situazioni di complessità e di conflitto (488AA) .. 42
 Diritto dell’informatica (058NN) 43
 Economia aziendale II (018PP) 44
 Economia dei mercati finanziari (020PP) 45
 Economia e gestione delle imprese - Corso B - (049PP) .. 46
 Organizzazione aziendale (357PP) 47
 Pianificazione e controllo gestionale (278PP) 48
B.2 Attività formative a scelta del gruppo GR3 49
 Ingegneria del software (271AA) 49
 Laboratorio di basi di dati (254AA) 50
 Ricerca operativa (029AA) ... 51
1.1 Objectives of the study program

The two year graduate program in Data Science and Business Informatics has been designed to meet the constant demand for professionals with an interdisciplinary skill both in informatics and in business to satisfy the increasing demand by companies to compete using analytics and data science methods. The graduate program is focused on Business Intelligence and Data Science techniques to support decision making. The interdisciplinary competence covered by the Data Science and Business Informatics degree is intended to overcome the cultural divide between IT and management. In fact, as reported by several studies and publications, there is a shortage of trained professionals who can integrate the various skills and approaches necessary to overcome the traditional distrust of management in involving computer professionals in decision-making. This is because computer professionals tend to be regarded as bearers of important but highly specialized knowledge, which may either seem difficult to apply or which has little relevance to the needs of organizations.

The professional profile of graduates in Data Science and Business Informatics is wider than traditional IT professionals with skills in areas such as operational information systems to support business activities. The aim is to provide graduates with specific professional skills that lead to an effective dialogue with managers to support tactical and strategic activities. To achieve this goal, key skills include Business Intelligence and Data Science (e.g. data warehousing, machine learning and artificial intelligence, data mining, business process modeling, big data analytics, visual analytics, text analytics). These technological skills are complemented by economic, statistical, and managerial skills on decision-oriented rather than just operational and management activities. In fact, the economic and business skills enable graduates to understand the operational performance of an organization and the decision-making criteria adopted by the management. The computer science skills enable them to translate this understanding into models using the latest IT, in order to contribute significantly to an organization’s decision-making and to the systematic innovation of products, processes and services. Finally, Data Science and Business Informatics graduates will have the skills necessary to access more advanced levels of university education, such as the PhD in Computer Science, PhD in Artificial Intelligence, or the PhD in Data Science.
1.2 Admission requirements

Applicants must hold a first cycle degree in Computer Science (Italian class: L-31), Computer Engineering (L-8), Statistics (L-41), Economics (L-18 or L-33), Physics (L-30), Mathematics (L-33) or in the same classes according to Italian Law D.M. 509/1999. Students are admitted also if they hold a Bachelor degree with at least 40 ECTS credits in the following areas: Management and Economics (SECS-P/), ING-IND/35), Informatics (INF/01, ING-INF/05), Physics (FIS/), Mathematics (MAT/), Statistics (SECS-S/). In the case of academic qualifications obtained abroad, exceptions may be made only with a resolution of the Admissions Committee, on the basis of the specific background of the candidate.

Applicants must also be fluent in English, e.g., holding a certificate at level [B2 or higher of CEFR] or an equivalent other certificate or holding one of the following:

- at least 6 ECTS of L-LIN/12 “Lingua e traduzione lingua Inglese”;
- proficiency certificate at level B2.1 rilasciato given by CLI (Centro Linguistico) of the University of Pisa;
- IELTS with score at least 5.5;
- TOEFL iBT with score at least 72;
- First Certificate in English;
- B2 certification given by any (public or private) authorized body;
- any other studies and experiences to be assessed by an interview.

The Master degree has not a maximum quota of admitted Italian or EU students per year.

Extra-UE students. There are quotas on the number of extra-UE students that can enroll. Information on how to apply for the Master Programme can be found at:

www.di.unipi.it/en/education/mds/enrollment-for-foreign-students

Pre-applications will undergo a selection process. For more information, follow the link above.

1.3 Pre-requisites

Basic knowledge on discrete mathematics, logics, computer programming, algorithmics, and data bases is required. Such topics are typically part of Bachelor programs in Computer Science or in Computer Engineering. Students with other Bachelor programs, if admitted, will learn such topics through one or more of the following elective subjects (see Chp. 2):

- Programming for data science (12 ECTS),
- Algorithms and data structures for data science (9 ECTS),
- Databases (6 ECTS).
Program overview

The Master programme is offered by the Department of Computer Science, partly in cooperation with the Department of Economics and Management of the University of Pisa, and it has the following structure:

- Compulsory subjects with 48 ECTS credits from the Informatics area.
- Compulsory subject with 6 ECTS credits from the Operations Research area.
- Elective subject with 9 ECTS credits.
- A thesis with 27 ECTS credits, which can be associated with an internship in a public institution or in a private company, both in Italy and abroad.

The effort for each subject is given in ECTS, which consists of (on average):

1 ECTS = 25 hours of study = 8 hours of teaching + 17 hours of study on your own.

Courses are organized in two semesters per year. Each course is taught in a specific semester only (except for annual courses taught in both semesters).

2.1 Study program

The study program depends on the applicant bachelor degree, but in all cases it will have at least 48 ECTS credits of Informatics, and it will be designed to give an interdisciplinary expertise in informatics, data science and business.

Courses marked with an asterisk are offered in Italian.

Compulsory Courses from the Informatics area (48 ECTS)

- **Decision support databases** (INF/01 ECTS 6 DSD 662AA 1 Sem.)
- **Data mining** (INF/01 ECTS 12 DM 420AA) which consists of:
 - Module I: Data mining: fundamentals (6 ECTS 1 Sem.)
- Module II: Data mining: advanced topics and applications (6 ECTS 2 Sem.)
- Business process modeling (INF/01 ECTS 6 BPM 295AA 1 Sem.)
- Laboratory of data science (INF/01 ECTS 6 LDS, 664AA 1 Sem.)
- Elective courses from Table 2.1 (18 ECTS)

<table>
<thead>
<tr>
<th>Insegnamento</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatics Area</td>
<td></td>
</tr>
<tr>
<td>Advanced databases</td>
<td>INF/01 9 ADB 641AA 2</td>
</tr>
<tr>
<td>Machine learning</td>
<td>INF/01 9 ML 654AA 1</td>
</tr>
<tr>
<td>Big data analytics</td>
<td>INF/01 6 BDA 599AA 1</td>
</tr>
<tr>
<td>Distributed data analysis and mining</td>
<td>INF/01 6 DDAM 687AA 1</td>
</tr>
<tr>
<td>Information retrieval</td>
<td>INF/01 6 IR 289AA 1</td>
</tr>
<tr>
<td>Programmatic advertising</td>
<td>INF/01 6 PRV 634AA 1</td>
</tr>
<tr>
<td>Social network analysis</td>
<td>INF/01 6 SNA 668AA 2</td>
</tr>
<tr>
<td>Technologies for web marketing</td>
<td>INF/01 6 TWM 537AA 2</td>
</tr>
<tr>
<td>Text analytics</td>
<td>INF/01 6 TXA 635AA 1</td>
</tr>
<tr>
<td>Visual analytics</td>
<td>INF/01 6 VA 602AA 2</td>
</tr>
</tbody>
</table>

Table 2.1 GR1 Group of choices.

Compulsory Subject from the Operations Research area (6 ECTS)
- Logistics (MAT/09 ECTS 6 LOG 255AA 1 Sem.)

Elective subjects from the Business Economics, Business Law, Mathematics, and Statistics areas (18 ECTS)
- Elective courses from Table 2.2 (18 ECTS)
2.1. STUDY PROGRAM

<table>
<thead>
<tr>
<th>Insegnamento</th>
<th>Description</th>
<th>Area</th>
<th>ECTS</th>
<th>Abbr.</th>
<th>Code</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business economics Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analisi e gestione dei costi*</td>
<td>SECS-P/07</td>
<td>9</td>
<td>ACG</td>
<td>265PP</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Fundamentals of business management</td>
<td>SECS-P/07</td>
<td>9</td>
<td>FBM</td>
<td>627PP</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Economia aziendale II*</td>
<td>SECS-P/07</td>
<td>9</td>
<td>EA2</td>
<td>018PP</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Economia e gestione delle imprese*</td>
<td>SECS-P/08</td>
<td>9</td>
<td>EGI</td>
<td>049PP</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Management practice</td>
<td>SECS-P/08</td>
<td>6</td>
<td>MP</td>
<td>629PP</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Organizzazione aziendale*</td>
<td>SECS-P/10</td>
<td>9</td>
<td>OA</td>
<td>357PP</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Pianificazione e controllo gestionale*</td>
<td>SECS-P/07</td>
<td>9</td>
<td>PCG</td>
<td>278PP</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Project design & management for data science</td>
<td>ING-IND/35</td>
<td>6</td>
<td>PDM</td>
<td>1075I</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Strategic and competitive intelligence</td>
<td>ING-IND/35</td>
<td>6</td>
<td>SCI</td>
<td>787II</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Business law Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diritto dell’informatica*</td>
<td>IUS/05</td>
<td>6</td>
<td>DIR</td>
<td>058NN</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Legal issues in data science</td>
<td>IUS/02</td>
<td>6</td>
<td>LDS</td>
<td>381NN</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Mathematics Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decisioni in situazioni di complessità e di conflitto*</td>
<td>MAT/09</td>
<td>6</td>
<td>DSC</td>
<td>636AA</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Model-driven decision making methods</td>
<td>MAT/09</td>
<td>6</td>
<td>MDD</td>
<td>666AA</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Statistics Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economia dei mercati finanziari*</td>
<td>SECS-P/01</td>
<td>6</td>
<td>EMF</td>
<td>020PP</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Statistics for data science</td>
<td>SECS-S/01</td>
<td>9</td>
<td>SDS</td>
<td>628PP</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.2 GR2 Group of choices.

Elective courses from the Business Economics, Business Law, Informatics, Mathematics, and Statistics areas (12 ECTS)

- Elective courses from Table 2.2 and/or Table 2.3 (12 ECTS)

<table>
<thead>
<tr>
<th>Insegnamento</th>
<th>Description</th>
<th>Area</th>
<th>ECTS</th>
<th>Abbr.</th>
<th>Code</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatics Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algorithms and data structures for data science</td>
<td>INF/01</td>
<td>9</td>
<td>ADS</td>
<td>751AA</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Databases</td>
<td>INF/01</td>
<td>6</td>
<td>DB</td>
<td>765AA</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Ingegneria del software*</td>
<td>INF/01</td>
<td>6</td>
<td>IS</td>
<td>271AA</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Laboratorio di basi di dati*</td>
<td>INF/01</td>
<td>6</td>
<td>LBD</td>
<td>254AA</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Programming for data science</td>
<td>INF/01</td>
<td>12</td>
<td>PDS</td>
<td>667AA</td>
<td>1-2</td>
<td></td>
</tr>
<tr>
<td>Mathematics Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ricerca operativa*</td>
<td>MAT/09</td>
<td>6</td>
<td>RO</td>
<td>029AA</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.3 GR3 Group of choices.

Other elective subject (9 ECTS)

- The student can choose one or two courses among the ones from GR1, GR2, GR3 or from Table 2.4 to reach 9 ECTS. Suggested courses depend on the Bachelor degree program of the student. Courses from other Master Programmes (e.g., in Computer Science) could also be considered for this slot.
Precedences

There is no formal precedence between courses. However, the following order should be respected to be able to attend subjects with profit:

- for **Laboratory of data science**, to have attended: **Decision Support Databases** and **Data mining**.
- for **Big data analytics**, to have attended: **Data mining**;
- for **Distributed data analysis and mining**, to have attended: **Data mining**;
- for **Programmatic advertising**, to have attended: **Technologies for web marketing**;
- for **Pianificazione e controllo gestionale**\(^*\), to have attended: **Fundamentals of business management** or **Economia aziendale II**\(^*\);
- for **Analisi e gestione dei costi**\(^*\), to have attended: **Fundamentals of business management** or **Economia aziendale II**\(^*\);
- for **Model-driven decision making methods**, to have attended: **Logistics**;
- for **Strategic and competitive intelligence**, to have attended: **Fundamentals of business management** or **Economia aziendale II**\(^*\);
- for **Information retrieval**, to have attended: **Algorithms and data structures for data science** (if applicable);
- for **Algorithms and data structures for data science**, to have attended: **Programming for data science** (if applicable).

This guidelines are particularly relevant for students that start attending courses later in the first semester.

Study plan

A recommended pattern of study follows, based on the program requirements above. Groups of choices for the selection of subjects are shown in italics.

The allocation of elective courses by each year/semester is only an indication. The 120 ECTS credits required for graduation can be earned in less than two years.

Student are required to submit the study plan within one month from enrollment. The study plan may be updated annually from 1st September to 31st January.

Draft study plans specifically tailored to a few Bachelor degrees are available at the web site of the Master degree.

Table 2.4 GR4 Group of choices.

<table>
<thead>
<tr>
<th>Insegnamento</th>
<th>Description</th>
<th>Area</th>
<th>ECTS</th>
<th>Code</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Economics Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economia dell’informazione(^*)</td>
<td></td>
<td>SECS-P/01</td>
<td>6</td>
<td>204PP</td>
<td>1</td>
</tr>
<tr>
<td>International management and marketing</td>
<td></td>
<td>SECS-P/08</td>
<td>12</td>
<td>544PP</td>
<td>2</td>
</tr>
<tr>
<td>Informatics Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artificial Intelligence fundamentals</td>
<td></td>
<td>INF/01</td>
<td>6</td>
<td>643AA</td>
<td>1</td>
</tr>
<tr>
<td>ICT risk assessment</td>
<td></td>
<td>INF/01</td>
<td>9</td>
<td>303AA</td>
<td>2</td>
</tr>
<tr>
<td>Peer to peer systems and blockchains</td>
<td></td>
<td>INF/01</td>
<td>6</td>
<td>261AA</td>
<td>2</td>
</tr>
<tr>
<td>Intelligent systems for pattern recognition</td>
<td></td>
<td>INF/01</td>
<td>9</td>
<td>760AA</td>
<td>2</td>
</tr>
<tr>
<td>Semantic web(^*)</td>
<td></td>
<td>INF/01</td>
<td>6</td>
<td>657AA</td>
<td>1</td>
</tr>
</tbody>
</table>
2.3. STUDY PLAN

<table>
<thead>
<tr>
<th>Year</th>
<th>First semester</th>
<th>ECTS</th>
<th>Second semester</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>GR2 Group</td>
<td>9</td>
<td>GR2 Group</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>GR2 or GR3 Group</td>
<td>6</td>
<td>GR2 or GR3 Group</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Logistics</td>
<td>6</td>
<td>GR1 Group</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Decision support databases</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data mining Module I: Fundamentals</td>
<td>6</td>
<td>Data mining Module II: Advanced topics and applications</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>33</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second</td>
<td>Business Process Modeling</td>
<td>6</td>
<td>Thesis</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Laboratory of Data Science</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GR1 Group</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elective subjects (GR1, GR2, GR3 or GR4 Group)</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>33</td>
<td>27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Courses in English for AY 2021/22

This appendix reports the syllabus of the courses offered in English as well as the links to the official program page (see esami.unipi.it) and the web page of each course.

A.1 Compulsory subjects

Business process modeling (295AA) (6 ECTS)

Semester: 1
Contact Person: Prof. Roberto BRUNI (bruni@di.unipi.it)
Program Page: esami.unipi.it

Objectives

The course presents techniques for Business Analytics according to the process-driven view of Business Process Modeling. It presents the main concepts and problematic issues related to the process management, where processes are understood as workflow over some basic activities, and to show some of the languages, conceptual models and tools that can help to handle the main problems in a proper way. During the course, the students will become acquainted with the technical terminology of the area, with several rigorous models that can be used to structure and compose processes, with the logical properties that such processes can be required to satisfy and with specific analysis and verification techniques. Moreover they will be given the possibility to experiment with some advanced tools for the design and analysis of business processes.

Syllabus

- Introduction to Key Issues in Business Process Management.
- Terminology and Classification.
Data mining (420AA) (12 ECTS)

Semester: 1, 2

Contact Person (1st sem.): Prof. Dino PEDRESCHI (pedre@di.unipi.it)
Contact Person (2nd sem.): Prof. Riccardo GUIDOTTI (riccardo.guidotti@unipi.it)
Program Page: esami.unipi.it
Web Page: didwiki.di.unipi.it/doku.php/dm/

Objectives
Recent tremendous technical advances in processing power, storage capacity, and interconnectivity are creating unprecedented quantities of digital data. Data mining, the science of extracting useful knowledge from such huge data repositories, has emerged as an interdisciplinary field in computer science. Data mining techniques have been widely applied to problems in industry, science, engineering and government, and it is believed that data mining will have profound impact on our society. The course is divided into two modules. The first presents an introduction to the basic concepts of data mining and the knowledge discovery process, and associated analytical models and algorithms. The second module provides an account of advanced techniques for analysis and mining of novel forms of data, and the main application areas and prototypical case studies.

Syllabus
Module 1: Foundations
– Concepts of Data Mining and the Knowledge Discovery Process.
– Data Preprocessing and Exploratory Data Analysis.
– Frequent Patterns and Associations Rules.
– Classification: Decision Trees and Bayesian Methods.
– Experiments with Data Mining Toolkits.
Module 2: Advanced topics and applications
– Mining Time-Series and Spatio-Temporal Data.
– Mining Sequential Data, Mining Large Graphs and Networks.
– Advanced Association, Correlation and Frequent Pattern Analysis.
– Advanced Classification, Cluster Analysis and Outlier Detection.
– Data Mining Languages, Standards and System Architectures.
– Ethical aspects of data mining.
– Privacy-Preserving Data Mining.
– Applications: Retail Industry, Marketing, CRM, Telecommunication Industry, Financial Data Analysis, Risk Analysis, Fraud Detection, Mobility and Transportation, Public Administration and Health.
A.1. Compulsory subjects

Decision support databases (662AA) (6 ECTS)

Semester: 1
Contact Person: Prof. Salvatore RUGGIERI (ruggieri@di.unipi.it)
Program Page: esami.unipi.it

Objectives

The course presents the main approaches to the design and implementation of decision support databases, and the characteristics of business intelligence tools and computer based information systems used to produce summary information to facilitate appropriate decision-making processes and make them more quick and objectives. Particular attention will be paid to themes such as conceptual and logical Data Warehouses design, data analysis using analytic SQL, algorithms for selecting materialized views, data warehouse systems technology (indexes, star query optimization, physical design, query rewrite methods to use materialized views). A part of the course will be dedicated to a set of case studies.

Syllabus

- Information systems and computer-based information systems in organizations.
- Decision Support System Based on Data Warehouses.
- Data Models for Data Warehouses and On-line Analytical Processing.
- Conceptual and logical design in Data Warehouses.
- Algorithms for Selecting Materialized Views.
- Data Warehouse Systems Technology: Indexes, Star Query Optimization,
- Physical Design, Query Rewrite Methods to Use Materialized Views.
- Case studies.
Laboratory of data science (664AA) (6 ECTS)

Semester: 1
Contact Person: Prof. Anna MONREALE (annam@di.unipi.it)
Program Page: esami.unipi.it
Web Page: didawiki.di.unipi.it/doku.php/mds/lbi/

Objectives
The course presents techniques for Business Analytics according to the data-driven view of Data Science and Business Intelligence. It presents technologies and systems for data access, for building and analyzing data warehouses, for reporting, and for knowledge discovery in databases. The accent of the module is on the use of tools and on the analysis of application problems by means of non-trivial samples and case studies. The student will be aware and able to manage the main technologies of Data Science and Business Intelligence, specifically software products for effective decision support.

Syllabus
– Introduction: Tools for Data Science and Business Intelligence.
– Data Access. Location, Format and API for Accessing Data in Text Files.
 Standards for Data Connectivity.
– Tools for Reporting and Multidimensional Browsing. Case Studies
A.1. Compulsory Subjects

Logistics (255AA) (6 ECTS)

Semester: 1
Contact Person: Prof. Maria Grazia SCUTELLA’ (scut@di.unipi.it)
Program Page: esami.unipi.it
Web Page: didawiki.di.unipi.it/doku.php/magistraleinformaticaeconomia/log/

Objectives
The course presents the structure and functions of logistics systems, analyzing major decision problems arising in the medium/long term (tactical/strategic decisions). After an introduction to the main characteristics of logistics systems, with emphasis on distribution logistics, optimization models for decision support are discussed. Some relevant models and methods are then illustrated with the aid of appropriate software tools, and logistics case studies are presented.

Syllabus
– Introduction to Supply Chain.
– Models and Methods for Location Problems.
– Models and Methods for Transportation Problems.
– Models and Methods for Inventory Management.
A.2 Elective subjects from the GR1 group

Advanced databases (641AA) (9 ECTS)

Semester: 2
Contact Person: Prof. Giorgio GHELLI (ghelli@di.unipi.it)
Program Page: esami.unipi.it
Web Page: www.di.unipi.it/~ghelli/bd2/bd2.eng.html

Objectives
The course provides advanced technical knowledge of the main issues related to the implementation and performance optimization of both classical centralized relational database systems for operational and OLAP processing and of recent advances in non-relational data models (columnar, document, key-value, graph) and scalable distributed architectures.

Syllabus
– Internals of relational database management systems.
– Optimizations of Data Warehousing management systems and On-Line Analytical Processing.
– Extract-Transform-Load and query/reporting in OLAP systems.
– Beyond SQL: NoSQL data management systems for big data.
– Distributed data processing and the Map-Reduce paradigm.
A.2. ELECTIVE SUBJECTS FROM THE GR1 GROUP

Big data analytics (599AA) (6 ECTS)

Semester: 1
Contact Person: Prof. Luca PAPPALARDO (luca.pappalardo@isti.cnr.it)
Program Page: esami.unipi.it
Web Page: didawiki.di.unipi.it/doku.php/bigdataanalytics/bda/

Objectives
In our digital society, every human activity is mediated by information technologies. Every minute, an avalanche of “big data” is produced by humans, consciously or not, that represents a novel, accurate digital proxy of social activities at global scale. Big data provide an unprecedented “social microscope”, a novel opportunity to understand the complexity of our societies, and a paradigm shift for the social sciences. This course is an introduction to the emergent field of big data analytics and social mining, aimed at acquiring and analyzing big data from multiple sources to the purpose of discovering the patterns and models of human behavior that explain social phenomena. The focus is on what can be learnt from big data in different domains: mobility and transportation, urban planning, demographics, economics, social relationships, opinion and sentiment, etc.; and on the analytical and mining methods that can be used. An introduction to scalable analytics is also given, using the “map-reduce” paradigm.

Syllabus
Big data sources
– Open (linked) data, Web activity data, Social network data, Social media data,
 Mobile phone data, Navigation GPS data, Commercial transaction data,
 Tourism-related data, Crowdsourcing / crowdsensing.
Big data analytics and social mining methods for:
– the discovery of individual social profiles.
– the analysis of collective behavior.
– the discovery of emotional content of text and sentiment analysis.
Big data analytics domains
– Mobility and transportation.
– Nowcasting of socio-economic indicators of progress, happiness, etc.
– Twitterology and nowcasting of social mood and trends.
– Tourism.
Ethical issues of big data analytics.
– Privacy and personal data protection.
– Privacy-preserving analytics.
– Social responsibility of data scientists.
Scalable data analytics
– Paradigms of NO-SQL databases.
– Data analysis processes with the “map-reduce” paradigm.
Distributed data analysis and mining (687AA) (6 ECTS)

Semester: 1
Contact Person: Prof. Roberto TRASARTI (roberto.trasarti@isti.cnr.it)
Program Page: esami.unipi.it
Web Page: didawiki.di.unipi.it/doku.php/mds/ddam/

Objectives
Mining with big data or big data mining has become an active research area. Running current analytical methodologies and software tools on a single personal computer cannot efficiently deal with very large datasets. Distributed computing platforms are a scalable solution for big data mining, obtained by dividing a large problem into smaller ones that are concurrently solved by many single processor/machine. This course aims at teaching the basic theoretical concepts behind the MapReduce distributed computing paradigm, and Hadoop in particular, and at building expertise in the practical usage of high performance computing tools for data engineering, analysis and mining. In particular the students will learn how the classical data mining algorithms can be applied on Big Data using Hadoop (Spark). Real (and open source) datasets will be used to present examples and to let the students build their own projects. Half of the lessons will consists of practice (Lab), and half of lectures.

Syllabus
- Motivations: Distributed Data Mining in a Big Data Scenario
- Recall parallel and distributed computing notions
- Introduction to Hadoop
- Hadoop Ecosystem
- Interacting with HDFS (LAB)
- Map-Reduce Programming Patterns
- Recall Python programming (LAB)
- Basic Spark (LAB)
- Data Analysis with Spark (LAB)
- Data Mining and Machine Learning with Spark (LAB)
- SparkSQL (LAB)
- Example on how to prepare a project
- Real Case Studies
A.2. ELECTIVE SUBJECTS FROM THE GR1 GROUP

Information retrieval (289AA) (6 ECTS)

Semester: 1
Contact Person: Prof. Paolo FERRAGINA (paolo.ferragina@unipi.it)
Program Page: esami.unipi.it

Objectives

Study, design and analysis of IR systems which are efficient and effective to process, mine, search, cluster and classify documents, coming from textual as well as any unstructured domain. In the lectures, we will:

- study and analyze the main components of a modern search engine: Crawler, Parser, Compressor, Indexer, Query resolver, Query and Document annotator, Results Ranker;
- dig into some basic algorithmic techniques which are now ubiquitous in any IR application for data compression, indexing and sketching;
- describe few other IR tools which are used either as a component of a search engine or as independent tools and build up the previous algorithmic techniques, such as: Classification, Clustering, Recommendation, Random Sampling, Locality Sensitive Hashing.

Syllabus

- Search engines.
- Crawling, Text analysis, Indexing, Ranking.
- Storage of Web pages and (hyper-)link graph.
- Results processing and visualization.
- Other data types: XML, textual DBs.
- Data processing for IR tools.
- Data streaming.
- Data sketching.
- Data compression.
- Data clustering (sketch).
Machine learning (654AA) (9 ECTS)
Semester: 1
Contact Person: Prof. Alessio MICHELI (micheli@di.unipi.it)
Program Page: esami.unipi.it
Web Page: pages.di.unipi.it/micheli/DID/

Objectives
We introduce the principles and the critical analysis of the main paradigms for learning from data and their applications. The course provides the Machine Learning basis for both the aims of building new adaptive Intelligent Systems and powerful predictive models for intelligent data analysis.

Syllabus
– Computational learning tasks for predictions, learning as function approximation, generalization concept.
– Linear models and Nearest-Neighbors (learning algorithms and properties, regularization).
– Neural Networks (MLP and deep models, SOM).
– Probabilistic graphical models.
– Principles of learning processes: elements of statistical learning theory, model validation.
– Support Vector Machines and kernel-based models.
– Introduction to applications and advanced models.
– Application project: implementation and use of ML/NN models with emphasis to the rigorous application of validation techniques.
Programmatic advertising (634AA) (6 ECTS)
Semester 1
Contact Person Prof. Nicola CIARAMELLA (ciaramella@noesis-research.com)
Program Page: esami.unipi.it
Web Page: didawiki.di.unipi.it/doku.php/mds/pa/

Objectives
The course aims at providing students with a conceptual framework and a toolbox for optimization of online advertising campaigns (inside sites, apps, games). At the end of the course the student should be able to design and possibly implement real-life systems for optimization of campaigns performance, intended in financial and marketing terms. The required mathematical background is limited to basic differential calculus and probability theory. The treatment is quantitative and concepts will be translated in formulas and algorithms. Nevertheless, focus will be on intuition and business meaning more than on formal rigor.

Syllabus
– The online advertising ecosystem. Advertisers, publishers, business intermediaries, technology providers, data providers. Trends and Programmatic Advertising.
– Online advertising campaign management: design, targeting, creation, monitoring, optimization and reporting.
– Data about people and their behavior. Classical segmentation, micro-segmentation, one-to-one relationships. Data management platforms.
– The publisher problem. Basic micro-economic concepts and decision theory: expected utility, marginal utility, pricing, decision trees, value of information, risk and uncertainty, opportunity cost, equilibrium and optimality.
Social network analysis (668AA) (6 ECTS)
Semester: 2
Contact Person: Prof. Dino PEDRESCHI (pedre@di.unipi.it)
Program Page: esami.unipi.it
Web Page: elearning.di.unipi.it/course/view.php?id=211

Objectives
Over the past decade there has been a growing public fascination with the complex “connectedness” of modern society. This connectedness is found in many contexts: in the rapid growth of the Internet and the Web, in the ease with which global communication now takes place, and in the ability of news and information as well as epidemics and financial crises to spread around the world with surprising speed and intensity. These are phenomena that involve networks and the aggregate behavior of groups of people; they are based on the links that connect us and the ways in which each of our decisions can have subtle consequences for the outcomes of everyone else. This short course is an introduction to the analysis of complex networks, with a special focus on social networks and the Web - its structure and function, and how it can be exploited to search for information. Drawing on ideas from computing and information science, applied mathematics, economics and sociology, the course describes the emerging field of study that is growing at the interface of all these areas, addressing fundamental questions about how the social, economic, and technological worlds are connected.

Syllabus
Graph theory and social networks
– Graphs.
– Social, information, biological and technological networks.
– Strong and weak ties.
– Networks in their surrounding context.
The World Wide Web
– The structure of the Web.
– Link analysis and Web search.
– Web mining and sponsored search markets.
Network dynamics
– Information cascades.
– Power laws and rich-get-richer phenomena.
– The small-world phenomenon.
– Epidemics.
A.2. ELECTIVE SUBJECTS FROM THE GR1 GROUP

Technologies for web marketing (537AA) (6 ECTS)
Semester: 2
Contact Person: not available yet
Program Page (previous year): esami.unipi.it
Web Page: not available yet

Objectives
Web analytics is the collection, measurement, analysis and reporting of Internet data (web, mobile, social media, email) for purposes of deep customer and market understanding and for digital service optimization. The course presents web analytics methods, algorithms, strategies and tools with applications to web personalization for improving user experience, to web marketing and advertising for improving visibility, to search engine optimization for improving ranking, and social media analysis for improving reachability and understanding opinions. Students are required to know basic data mining and data warehousing concepts.

Syllabus
– The mobile web.
– Tools: Google analytics.
– Web personalization and user segmentation.
– Recommender systems: collaborative filtering, content based, hybrid.
– Controlled experiments on the web.
– Search engine optimization and marketing.
– Social media analysis.
– Social media scoring and marketing.
– Real time analytics.
– Privacy, profiling and regulations.
Text analytics (635AA) (6 ECTS)
Semester: 1
Contact Person: Prof. Andrea ESULI (andrea.esuli@cnr.it)
Program Page: esami.unipi.it
Web Page: didawiki.di.unipi.it/doku.php/mds/txa/

Objectives
The course targets text analytics systems and applications to respond to business problems by discovering and presenting knowledge that is otherwise locked in textual form. The objective is to learn to recognize situations in which text analytics techniques can solve information processing needs, to identify the analytic task/process that best models the business problem, to select the most appropriate resources methods and tools, to collect text data and apply such methods to them. Several applications context will be presented: information extraction, sentiment analysis (what is the nature of commentary on an issue), spam and fake posts detection, quantification problems, summarization, etc.

Syllabus
– Linguistic essentials: words, lemmas, morphology, PoS, syntax.
– Basic text processing: regular expression, tokenisation.
– Data gathering: twitter API, scraping.
– Basic modelling: collocations, language models.
– Libraries and tools: NLTK, Keras.
– Applications:
 Classification/Clustering
 Sentiment Analysis/Opinion Mining
 Information Extraction/Relation Extraction
 Entity Linking
 Spam Detection: mail spam & phishing, blog spam, review spam.
Visual analytics (602AA) (6 ECTS)

Semester: 2
Contact Person: Prof. Salvatore RINZIVILLO (rinzivillo@isti.cnr.it)
Program Page: esami.unipi.it

Objectives

The availability of large data sources provides new opportunities for understanding patterns and behaviors of modern society. The information from these sources requires effective visualization methods to extract meaningful information from the data and facilitate the interpretation of very complex phenomena. The objective of the course is to present an overview of basic methods and visualization techniques for effective presentation of information from different sources: structured data (relational hierarchies, trees), relational data (social networks), temporal data, spatial data and data space-time. We will present and discuss several case study scenarios with the existing methods and tools.

Syllabus

Visual Metaphors for Information
– Hierarchical and structured data.
– Relational and graph-based data.
– Temporal Data.
– Spatial data.
– Spatio-temporal data.
– Unstructured information (text).

Methods and Tools
– Overview of existing visual analytics environments.

Visual Analytics Process
– Definition of a Knowledge Discovery process.
– Framework for VA.
– Visual exploration and analytics of data.
– Case studies.
A.3 Elective subjects from the GR2 group

Fundamentals of business management (627PP) (9 ECTS)

Semester: 1
Contact Person: Prof. Riccardo GIANNETTI (riccardo.giannetti@unipi.it)
Web Page: moodle.ec.unipi.it

Objectives

The course is designed to introduce students from different backgrounds (especially from STEM disciplines) to the most relevant topics and concepts characterizing business management, and to provide them with the ability to apply business management knowledge to practical tasks. The topics proposed are relevant to a variety of application sectors, and cover both theoretical concepts and relevant managerial implications. The course will also introduce students to the basic concepts of financial and managerial accounting, including concepts of costs, volumes and profits, and their relationships, budgeting, performance measurement and evaluation. Students will increase their familiarity with the accounting process, and will learn to read and understand financial statements. The course will also discuss the economics and management of strategic decisions and human capital.

Syllabus

– The firm and the market
– What is a firm?
– Theories of the firm
– The firm as a sustainable system
– Where does a firm work, interact and evolve?
– Value creation and firm’s objectives
– The competitive advantage and the entry strategies
– The firm’s functions
– Production, Research & Development, Accounting, Finance, Innovation
– Processes and techniques of marketing
– Operations management
– Procurement and logistics
– Finance
– Principles of financial accounting and budget
– Firm’s value, finance and capital structure
– Resources management, strategy, business models
– Economics and management of strategic decisions
– Governance, networking and strategic collaboration
– Human resources management practices

Important notice: for the A.Y. 2021/22 this course will be mapped to the Management and fundamentals of accounting (12 ECTS, 581PP) course of the Bachelor in Economics. The teacher will instruct on the part of the course program relevant for students of Data Science and Business Informatics.

Notice: this course and Economia Aziendale II cannot be both present in the study plan. Moreover, this course cannot be chosen if the student bachelor is from the Economics area.
A.3. ELECTIVE SUBJECTS FROM THE GR2 GROUP

Legal issues in data science (381NN) (6 ECTS)

Semester: 2

Contact Person: Prof. Giovanni COMANDE’ (giovanni.comande@sssup.it)

Program Page: esami.unipi.it

Web Page: TBA

Objectives

The digital economy and the digital society harness the power of big data, computational capacity, innovation and interconnection. Every human activity is mediated by information technologies. Today’s technologies enable unprecedented exploitation of information, being it small or big data, for any thinkable purpose, but mostly in business and surveillance with the ensuing legal and ethical anxieties and constraints. Algorithms are regularly used for mining data, offering unexplored patterns and deep non-causal analyses to those businesses able to exploit these advances. Yet, these innovations need to be properly framed in the existing legal background, fit in the existing set of guarantees of fundamental rights and freedoms, coherently policy related to reap the richness of big and open data and administration while empowering equally all players. For these aims data protection plays a significant role. The course aims at enabling students to work on algorithms and data mining techniques in ways that are compliant to the applicable legal framework and aware of the interplay between techniques and normative rules.

Syllabus

The Algorithmic Society: the Classifying Society
– Background and Overview, Surveillance Society
– Big Other, Networks of Control, Predicting Behavior
– People Analytics, Behavioural “Nudging”
– New Emerging Human Rights in the age of Behavioral Data Science and Neurotechnologies
– Towards “Mental Privacy” and “Decision Integrity”
– Legal and ethical implication of computational capacity.
Building Legally-Compliant Algorithms:
– Legal Pitfalls of Algorithms, The Problems of Personalization, Data Handling & Sharing,
– Deploying Algorithms for Human Rights: Complications & Challenges
– Classification of Algorithms in the Information Society
– Legal Implications and Business Applications, Exploitation of Public Sector Data
– Competition Law in the Age of Algorithms, Transparency
– Accountability and traceability of algorithm based decision-making
– Accountability in the Machine Learning Context
– Technical and Legal Options to Enhance Transparency & Accountability
– Legal Liability for Algorithm Autocomplete (ISP Liability)
– Open Data Governance, Data Ethics.

General principles of privacy law: The American approach, The European approach.
The General Data Protection Regulation:
– Notions and principles, GDPR global reach and compliance
– Google Spain Decision
Privacy in operation
– Privacy-by-Design, GDPR Solutions: The Right to an Explanation, etc.
– Notions of Privacy in the Algorithmic Age, Privacy from the Government
– Surveillance Capitalism, Governance by Proxy, Privacy from Private Entities
– Privacy from Platforms, Privacy from Employers, Privacy from our Devices (IoT).

Comparative Perspectives & Crossborder Issues:
– Comparative Privacy and security Regimes: GDPR vs. USA
– Comparative Privacy and security Regimes: GDPR vs. China.
Management practice (629PP) (6 ECTS)

Semester: 2
Contact Person: Prof. Cristina MARULLO (cristina.marullo@santannapisa.it)
Web Page: esami.unipi.it

Objectives
This advanced course aims at providing students with knowledge of the main topics and management practices characterizing today's competitive environment. A special emphasis will be put on the role of enabling technologies and on management practices in innovative firms. The course will also introduce students to entrepreneurial practices in information science (how to develop and bring to the market new products and services based on embedded systems and high-tech solutions).

Syllabus
1) The innovative firm: theoretical concepts and management implications
 – Knowledge, invention and innovation.
 – Technological paradigms: nature and evolution.
 – Sources of innovation.
 – Innovation typologies and dynamics.
 – Innovation diffusion and market barriers.
 – The innovative firm: resources, competencies and boundaries.
 – Quantitative indicators of innovative activities.
 – Innovation and firm growth.
 – The geography of R&D: knowledge and innovation.
 – Entrepreneurial practices in information science.
2) Management practices and enabling technologies
 – Technological paradigms in information science.
 – Architectures (r)evolution and firms’ organization.
 – Software (r)evolution and firms’ key competencies evolution.
 – Network (r)evolution and firms? boundaries.
 – AI (r)evolution and Industry 4.0.
A.3. Elective subjects from the GR2 group

Model-driven decision-making methods (666AA) (6 ECTS)

Semester: 2
Contact Person: Prof. Antonio FRANGIONI (frangio@di.unipi.it)
Program Page: esami.unipi.it
Web Page: groups.di.unipi.it/optimize/Courses/MDBsM/2021/

Objectives
The course will enable the student to produce and/or appropriately use software tools for the support to complex decisions (mainly at the corporate/industrial level) based on mathematical optimization techniques. The course is focussed on practical aspects of these tools. The main aim is to familiarize the students with the specific computer science aspects of these activities, such as data preparation and validation, the development of complex mathematical models, the knowledgeable use of the corresponding solution algorithms, the impact on this process of data uncertainty and the available methodologies to tackle this problem.

Syllabus
– Decision theory, decision processes.
– Architecture of decision support systems.
– Reminds to the theory of Linear Programming and Integer Linear Programming problems.
– Solvers of Linear Programming and Integer Linear Programming problems.
– Methodologies for improving performances of the algorithms.
– Data uncertainty issues within optimization methods.
Project design & management for data science (1075I) (6 ECTS)

Semester: 2
Contact Person: Prof. Filippo CHIARELLO
Web Page: esami.unipi.it

Objectives
The goal of the course is to introduce students to practical tools and methods to design and manage data science driven projects. Students will learn and apply tools coming from design theory, to be used in every DS phase, from problem understanding to results communication. The course will fill the existing gap in students’ competences, to be able to structure unstructured problems, similarly to what they will be asked in their future job positions. Each topic will teach the students a clear tool to be used from day 1 in their projects. The course will end with a series of “Design for” lessons to place the content in a specific context (i.e. I4.0, sustainability, equality).

Syllabus
Project design module:
- Soft Skills: what they are and why are they important for a DS project.
 - The concept of not-so-soft skills.
- Research Questions Design: Types of RQs, writing proper RQs.
- Problem Setting: From questions to problems.
- Problem Solving: Tools and techniques for problem solving.
- Project Scoping: Define the scope of the analysis. Definition of stopping criteria.
- Goal Design: How to define goals.
- Measures Design: Process Indicators VS Result Indicators.
- Information Retrieval: Find the right information [Query Design].
- Team Design: Find and mix the right competencies for a DS Project [Bloom’s Taxonomy].
- Design for I4.0: what is industry 4.0, the main technologies, future developments.
- Design for Sustainability: how data can be used to design green products.
- Design for Gender Equality: avoid gender biases in DS.
 - The case of biased AI systems.
- Design for post COVID-19 word: How COVID-19 is reshaping DS.

Project management module:
- Fundamentals: projects and processes.
- Project planning and WBS.
- Scheduling techniques [GANTT, PERT, CPM].
- Project costing estimation.
- SCRUM & Agile methodologies for data science projects.
Statistics for data science (628PP) (9 ECTS)

Semester: 2

Contact Person: Prof. Salvatore RUGGIERI (ruggieri@di.unipi.it)

Program Page: esami.unipi.it

Web Page: didwiki.di.unipi.it/doku.php/mds/sds/

Objectives
The course presents the main concepts and techniques of probability, statistics, and time series, which can be useful for the data analysis and data science. After consolidating the knowledge in probability theory, the course is aimed at presenting the main methods and concepts of estimation theory and hypothesis testing. The second part of the course focuses on statistical inference and validation of core data processing tasks and machine learning models. Advanced topics will cover stochastic processes and time series, focusing on the ARMA framework and Markov chains. The theoretical notions are interleaved with exercises and project work using the R programming language.

Syllabus
– Brief review on probability theory, random variables and convergence theorems for sequences of random variables.
– Exploratory data analysis: graphical and numerical summaries.
– Basic statistical models.
– The bootstrap method.
– Estimation: unbiased estimators, efficiency and mean squared error, maximum likelihood, expectation maximization.
– Least squares estimation and regression.
– Confidence intervals and hypotheses testing.
– Sampling and imputation methods.
– Categorical data and inference for contingency tables.
– Classifier error rate estimation and calibration.
– Noise and robust statistics.
– Bayesian inference.
– Causal inference: structured causal model, potential outcome model.
– Brief introduction to stochastic processes and linear time series analysis.
– Markov Chains and Monte Carlo Markov Chain.

Important notice: the course Statistical methods for data science (500PP) (6 ECTS) has been discontinued since A.Y. 2021/22. Students with such a course in their study plan can contact the teacher for instructions on how to map to Statistics for data science.
Strategic and competitive intelligence (787II) (6 ECTS)

Semester: 2
Contact Person: Prof. Antonella MARTINI (a.martini@ing.unipi.it)
Program Page: esami.unipi.it
Web Page: didawiki.di.unipi.it/doku.php/mds/sci/

Objectives
CI programs have goals such as proactively detecting opportunities or threats, eliminating or reducing blind-spots, risks and/or surprises; and reducing reaction time to competitor and marketplace changes. The end product of any worthwhile CI activity is what practitioners term actionable intelligence, i.e. intelligence that management can act upon. It is more than analysing competitors: it is a process for gathering information, converting it into intelligence (about products, customers, competitors, and any aspect of the environment) and then using it in decision making. In this sense, big data brings big change to CI. The course includes in-class seminars that introduce the fundamentals of competitive intelligence, including systems and strategic thinking. It provides many tools and techniques. Students will apply these tools in groups when analysing a preselected case company. They are expected to present early stage versions of their reports and, in the final workshop, they will present the results of their CI analysis, which is then discussed in plenary.

Syllabus
Part 1: Foundations of competitive intelligence
 – Systems thinking for management.
 – CI process.
 – Sources and collection techniques.
 – CI professionals.
Part 2: Competitor and Market intelligence tools
 – Competitive benchmarking (to assess competitive cost of operations, to analyze the true capabilities of a rival, as well as its immediate future actions).
 – Early warnings and blindspots.
 – Business ecosystems (value network analysis).
 – Advanced tools: scenario analysis, war gaming.
Part 3: Technology intelligence tools
 – Patent analysis and Bibliometrics analysis.
 – Technology foresight.
A.4. Elective subjects from the GR3 group

Algorithms and data structures for data science (751AA) (9 ECTS)

Title in English: Algorithms: Theory and practice

Semester: 2

Contact Person: Prof. Rossano VENTURINI (rossano.venturini@unipi.it)

Program Page: esami.unipi.it

Web Page: rossanoventurini.github.io/teaching/

Objectives
The course introduces basic data structures and algorithmic techniques that allow students to solve computational problems on the most important data types, such as sequences, sets, trees, and graphs. The lectures will be complemented by an intensive activity in laboratory. Students will experiment with algorithms and data structures by writing their own implementations or by using third-party libraries. The goal of the class is to enable students to design and implement efficient algorithms, choosing the most appropriate solutions in their future projects.

Syllabus
– Introduction and basic definitions: algorithm, problem, instance.
– Computational complexity analysis of algorithms.
– Sorting: Mergesort, Quicksort and Heapsort.
– Searching: Binary Search, Binary Search Tree, Trie, and Hashing.
– Algorithms on Trees: representation and traversals.
– Algorithms on Graphs: representation, traversals, and most important problems.
– External memory model: sorting and searching.
Databases (765AA) (6 ECTS)
Semester: 2
Contact Person: Prof. Giorgio GHELLI (ghelli@di.unipi.it)
Program Page: esami.unipi.it
Web Page: www.di.unipi.it/~ghelli/bd1/lucidi.html

Objectives
The management of information is the main use of computers in organizations of all types and sizes. Information management is mostly based on database technology. The aim of the course is to present the features of thesesystems, in particular the relational ones, their architecture and the principles they are inspired by, from the point of view of application designers.

Syllabus
– Data base and database management system: definition and functionalities.
– Database design: conceptual modeling using the object-oriented data model.
– The relational data model.
– Mapping of conceptual schemas onto relational logical schema.
– The SQL language, with a special emphasis on the query sublanguage and its relationship with first order logic.
– Theory of relational database normalization.
– Database implementation: access plans and transaction management.
– NoSQL systems.
Programming for data science (667AA) (12 ECTS)
Semester: 1-2
Contact Person (1st sem): Prof. Franco Maria NARDINI (francomaria.nardini@isti.cnr.it)
Contact Person (2nd sem): Prof. Laura SEMINI (laura.semini@unipi.it)
Program Page: esami.unipi.it
Web Page: didawiki.di.unipi.it/doku.php/mds/pds/

Objectives
This is an introductory course to computer programming and related mathematical/logic background for students without a Bachelor in Computer Science or in Computer Engineering. The objective is to smoothly introduce the student to the programming concepts and tools needed for typical data processing and data analysis tasks. The course consists of lectures and practice in computer labs.

Syllabus
– Sets, relations, functions, combinatorics, grammars, automata.
– Propositional and first order logic.
– Induction and recurrence relations.
– Imperative programming.
– Object oriented programming.
– Programming stack and development tools.
A.5 Elective subjects from the Table 2.4 group

The subjects from Table 2.4 of the Business Economics area are offered by the Department of Economics and Management. Detailed information will be available at the website:

https://www.ec.unipi.it/didattica/

The subjects from Table 2.4 of the Informatics area are offered by the Computer Science Master Degree. Detailed information will be available at the website:

www.di.unipi.it/en/education/mcs

Important notice: the timetable of these subjects will not be included in the official timetable of the Data Science and Business Informatics programme. Please, check the website above for timetables.
Corsi in Italiano per l’AA 2021/22

This appendix reports the syllabus of the courses offered in Italian as well as the links to the official program page (see esami.unipi.it) and the web page of each course.

B.1 Attività formative a scelta del gruppo GR2

Analisi e gestione dei costi* (265PP) (9 ECTS)
Title in English: Cost Analysis and Management
Semester: 2
Contact Person: Prof. Riccardo GIANNETTI (riccardo.giannetti@unipi.it)
Program Page: esami.unipi.it
Web Page: moodle.ec.unipi.it
Lesson Log: unimap.unipi.it/registri/dettregistriNEW.php?re=3311702:::;ri=9747

Obiettivi
Il corso ha lo scopo di approfondire alcuni aspetti della determinazione dei costi e di trattare le principali logiche e tecniche per la gestione dei costi a supporto delle decisioni.

Syllabus
– L’analisi e la gestione dei costi e il processo decisionale.
– Approfondimenti sull’ActivityBased Costing.
– L’ActivityBased Management.
– La gestione della profitabilità del cliente.
– I costi ambientali.
– I costi della qualità.
– Il target costing.
Decisioni in situazioni di complessità e di conflitto (488AA) (6 ECTS)

Title in English: Decisions, complexity and conflicts

Semester: 2

Contact Person: Prof. Laura GALLI (laura.galli@unipi.it)

Program Page: esami.unipi.it

Lesson Log: https://unimap.unipi.it/registri/dettregistriNEW.php?re=3312989::&ri=013986

Obiettivi

Fornire strumenti formali, di tipo sia quantitativo che qualitativo, per affrontare problemi decisionali e gestionali in sistemi complessi di tipo sociale, politico, ambientale o economico. Ci si propone di sviluppare negli studenti e studentesse che seguiranno il corso la capacità di formulare e strutturare, utilizzando un approccio sistemico, un problema, di costruirne dei modelli, di analizzare e valutare le possibili soluzioni alternative, e di gestire le attività necessarie alla messa in atto delle decisioni prese.

Syllabus

Problemi e loro strutturazione
- Processi decisionali
- Analisi dei sistemi e pensiero sistemico
- Analisi dinamica dei sistemi.
- Cicli causali, variabili di flusso e di livello.

La Dinamica dei Sistemi
- Il linguaggio della dinamica dei sistemi.
- Livelli, flussi e ritardi.
- Esempi (sostenibilità ambientale, processi di azione-reazione, un modello di "guerra dei prezzi", ...).

Cooperazione, competizione e sfruttamento
- Un modello di produzione ed allocazione di risorse.
- Cenni di teoria dei giochi, equilibrio di Nash.
- Il dilemma del prigioniero.
- La tragedia dei Commons.
- “Social Choice” e votazioni
 - Ordinamenti e preferenze.
 - Metodi di Condorcet e di Borda e loro varianti.
 - Il teorema di impossibilità di Arrow e sue conseguenze.
 - Il metodo del consenso.

Sistemi elettorali
- Distribuzione dei seggi fra liste e distretti (metodi dei resti, metodi del divisore, ...).
- Definizione dei distretti elettorali.
- Alcuni paradossi.
- Analisi di alcuni sistemi elettorali.

Valutazione di progetti
- Analisi costi benefici: varianti e limiti.
- Analisi costi efficacia.
- Analisi multicriteria.
- Metodo ELECTRE.

Indici e misure
- Qualità, incertezza e soggettività nelle misure.
- Indici di sviluppo.
- Indici di disuguaglianza.
- Indice dello sviluppo umano.

Note. L’insegnamento è erogato dal Corso di Laurea Triennale in Scienze per la Pace. Il calendario accademico delle lezioni e degli esami potrebbe differire lievemente.
Obiettivi
L’avvento delle tecnologie informatiche ha sollevato problemi per la regolamentazione giuridica delle attività compiute loro tramite. Il corso si propone di analizzare queste problematiche, considerando sia le regole giuridiche specifiche per l’era digitale sia la possibilità di impiego del diritto generale. In particolare, il corso si propone di esaminare, tra alcune grandi tematiche del diritto nell’era digitale, quelle più proprie del contesto aziendale, ossia la contrattazione telematica, il documento informatico, il trattamento dei dati personali e le responsabilità in Internet.

Syllabus
– Il commercio elettronico. Conclusione, validità, forma e prova del contratto concluso via email e tramite point and click: applicabilità delle regole generali, deroghe e regole speciali. La Direttiva europea sul commercio elettronico e la sua attuazione: il d.lgs. n. 70/2003. I contratti ad oggetto informatico.
– La tutela del consumatore e il regime delle informazioni in rete: informazioni generali, commerciali e pubblicitarie non sollecitate (“spamming”). Le informazioni pubblicitarie nelle professioni regolamentate.
Il trattamento in outsourcing dei dati personali.
– Firma digitale, firma elettronica e documento informatico: questioni di forma, validità e prova. La posta elettronica certificata. La trasmissione telematica dei documenti. I certificatori.
– I domain names. I nomi di dominio aziendali. Le regole della Registration Authority.
– Gli illeciti in Internet e la responsabilità dei providers.
– La tutela del software. Software libero e software proprietario. Il diritto di autore all’epoca di Internet.
– L’elaboratore e l’adempimento dell’obbligazione: la moneta elettronica e i mezzi di pagamento in Internet.
Obiettivi
L’obiettivo formativo è quello di favorire l’acquisizione di conoscenze di base mirate alla costruzione ed all’interpretazione del bilancio di esercizio, nonché al controllo della gestione aziendale.

Syllabus
- Bilancio di esercizio: ruolo e finalità, normativa civilistica, schemi di redazione,
- criteri di valutazione, informazioni integrative diffuse agli stakeholder.
- Dinamiche dei processi di pianificazione e controllo.
- Il ruolo, le finalità e le caratteristiche essenziali dei principali strumenti di programmazione e controllo della gestione aziendale, come il budget, i costi,
- l’analisi delle performance.

Note
All’inizio delle lezioni verranno riassunti gli elementi utili dell’insegnamento di *Economia Aziendale I*, il quale non fa parte del curriculum di studi della Laurea Magistrale in Data Science and Business Informatics.

Questo corso e *Fundamentals of Business Management* non possono essere entrambi presenti nel piano di studi.
Economia dei mercati finanziari\(^*\) (020PP) (6 ECTS)

Title in English: Economics of financial markets

Semester: 1

Contact Person: Prof. Davide FIASCHI (davide.fiaschi@unipi.it)
Program Page: esami.unipi.it
Web Page: moodle.ec.unipi.it
Lesson Log: unimap.unipi.it/registri/dettregistriNEW.php?re=3311253::::&ri=9235

Obiettivi
Nel corso saranno discussi alcuni dei temi classici dell’economia finanziaria e posti i metodi quantitativi correntemente utilizzati nella verifica empirica.

Nota Bene: L’insegnamento ha anche una versione estesa da 9 CFU che è possibile inserire tra i crediti liberi del proprio piano di studi (codice esame 558PP). Il Contact Person indicherà quale parte del programma viene coperta dalla versione di 6 CFU. Al momento della registrazione prestare attenzione al codice corretto: 020PP per 6 CFU, 558PP per 9 CFU.
Economia e gestione delle imprese - Corso B - (049PP) (9 ECTS)

Title in English: Business Management

Semester: 2

Contact Person: Prof.ssa Antonella ANGELINI
(antonella.angelini@unipi.it)

Program Page: esami.unipi.it

Web Page: moodle.ec.unipi.it

Lesson Log: unimap.unipi.it/registri/dettregistriNEW.php?re=3311794::::&ri=9797

Obiettivi

Il corso fornisce gli elementi analitici di base per comprendere il comportamento d’impresa. Tratta le principali tematiche economicomanageriali, le logiche di base e gli strumenti relativi alla gestione strategica delle imprese e all’analisi dell’ambiente competitivo. Gli obiettivi formativi sono:

– Conoscere le principali teorie che spiegano i fattori che influenzano la redditività di impresa.

– Acquisire una conoscenza introduttiva delle dinamiche di organizzazione della produzione industriale, e di come essa sia cambiata nel tempo.

– Acquisire conoscenze di base degli strumenti di marketing che le imprese hanno a disposizione per aumentare la propria competitività.

– Sviluppare o rafforzare la capacità critica e di pensiero individuale. Il corso intende infatti evitare l’apprendimento passivo e acritico dei temi oggetto di studio.

Syllabus

Parte I (L’analisi di settore e del sistema competitivo)

– L’analisi di settore.

– L’analisi dei concorrenti.

– I gruppi strategici.

– Le risorse e le competenze nella formulazione strategica.

– L’analisi del vantaggio competitivo (il vantaggio di costo e di differenziazione).

Parte II (L’analisi dell’impresa e delle sue funzioni.

Un focus su produzione e marketing)

– Produzione.

– Strategia innovativa e flessibilità dell’impresa.

– Il modello di flessibilità dei sistemi tecnicoproduttivi.

– Marketing.

– Il processo di marketing management.

– La segmentazione del mercato.

– Il marketing mix (prodotto, promozione, distribuzione e prezzo).
Organizzazione aziendale - Corso A - (357PP) (9 ECTS)

Title in English: Business Organization

Semester: 2

Contact Person: Prof. Marco GIANNINI (marco.giannini@unipi.it)

Program Page: esami.unipi.it

Web Page: moodle.ec.unipi.it

Lesson Log: unimap.unipi.it/registri/dettregistriNEW.php?re=3310163:::ri=6078

Obiettivi
Lo scopo di questo corso è di fornire una spiegazione realistica di come funziona una moderna organizzazione. L’obiettivo formativo è di sviluppare un pensiero critico, un atteggiamento interrogativo e una capacità analitica riguardo ai problemi organizzativi.

Syllabus
- Strategia e risposte all’incertezza ambientale.
- Variabili strutturali per la progettazione organizzativa in differenti contesti empirici.
- Relazioni interorganizzative.
- Impatto della tecnologia sull’organizzazione.
- Ciclo di vita di una organizzazione.
- Meccanismi di controllo organizzativo.
- Cultura ed etica organizzativa.
Pianificazione e controllo gestionale* (278PP) (9 ECTS)

Title in English: Management Control
Semester: 1
Contact Person: Prof. Luciano MARCHI (lmarchi@ec.unipi.it)
Program Page: esami.unipi.it
Web Page: moodle.ec.unipi.it
Lesson Log: unimap.unipi.it/registri/dettregistriNEW.php?re=3296678::::&ri=6848

Obiettivi
Il corso si propone di approfondire le caratteristiche della pianificazione e controllo evidenziando tanto l’evoluzione nella dottrina che nella strumentazione operativa a supporto del management.

Syllabus
– Il sistema di controllo.
– Il processo, i meccanismi operativi e lo stile di controllo.
– Le variabili del controllo.
– Il processo di budgeting.
– L’analisi degli scostamenti.
– I contenuti ed il processo di reporting.
– L’analisi reddituale e patrimoniale.
– La leva operativa e la leva finanziaria.
– La simulazione economico-finanziaria.
– Il processo di simulazione: le simulazioni di efficienza e di struttura.
– Gli aspetti evolutivi del budget.
– Il modello di previsione, simulazione e pianificazione SISMA.
– Casi aziendali.
B.2 Attività formative a scelta del gruppo GR3

Ingegneria del software* (271AA) (6 ECTS)
Title in English: Software Engineering
Semester: 2
Contact Person: Prof.ssa Laura SEMINI (semini@di.unipi.it)
Program Page: esami.unipi.it
Web Page: didawiki.di.unipi.it/doku.php/informatica/is-a

Obiettivi
Fornire le metodologie e strumenti per la progettazione, realizzazione, verifica, validazione e misurazione di sistemi software.

Syllabus
– Processo di sviluppo software: problemi della produzione del software, modelli di ciclo di vita.
– Analisi del dominio: modelli statici (classi e associazioni) e dinamici (attività, macchine a stati).
– Analisi dei requisiti: modello statico (casi d’uso) e dinamici (narrative, diagrammi di robustezza).
– Progettazione architettonica: modelli statici (viste strutturali e logistiche) e dinamici (vista componenti/connettori).
– Progettazione di dettaglio: modello statico delle componenti (strutture composite) e modello dinamico (interazioni).
– Verifiche e prove: obiettivi e pianificazione delle verifiche, progettazione e valutazione delle prove.
Laboratorio di basi di dati* (254AA) (6 ECTS)
Title in English: Database Programming Lab
Semester: 2
Contact Person: Prof.ssa Giovanna ROSONE (giovanna.rosone@unipi.it)
Program Page: esami.unipi.it
Web Page: pages.di.unipi.it/rosone/LBD.html

Obiettivi
Il laboratorio si propone l’obiettivo di completare le nozioni relative ad analisi e progettazione di dati, procedure ed interfacce di applicazioni per basi di dati, ed alla loro realizzazione. Tutte le nozioni introdotte vengono immediatamente sperimentate dagli studenti, utilizzando notazioni standard ed un sistema commerciale, quale ad esempio ORACLE DBMS ed ORACLE WebServer, sviluppando un case study che si conclude, alla fine del corso, con la realizzazione da parte degli studenti di un sistema funzionante.
Obiettivi
L’insegnamento ha l’obiettivo di fornire gli strumenti per costruire modelli matematici di ottimizzazione, l’analisi di tali modelli e i metodi risolutivi.

Syllabus
– Modelli matematici della ricerca operativa.
– Programmazione lineare.
– Programmazione lineare su reti.
– Programmazione lineare intera.