
## Master program in Computer Science

# Artificial Intelligence

1001

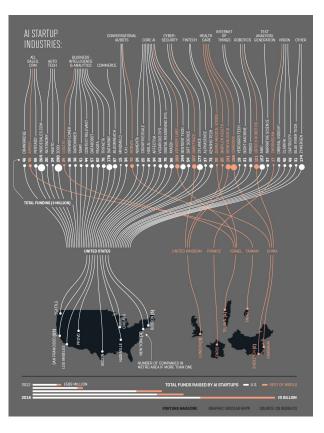
### Al is taking over the world



AI was the star at the latest Google I/O conference

- 2 hrs of keynote talk
- almost *every* aspect of Google products and services relies on Al <u>today</u>

### Al is taking over the world






### Big and small players alike are betting on Al







### New branches from an old tree

1946: John von Neuman, ENIAC, a giant brain
1950: Alan Turing publishes the Turing Test
1955: Arthur Samuel, first *learning machine* (checkers)
1956: Dartmouth conference, birth of the term *Artificial Intelligence*1958: Frank Rosenblatt, Perceptron, *artificial neural network*1963: J. Alan Robinson implements *general deduction* on a computer
1966: Joseph Weizenbaum, ELIZA -- the first chatbot
1969: Marvin Minsky, Seymour Papert. Fundamental limits of Perceptron
1972: Alain Colmerauer, Prolog -- efficient computing by rules.

1970-1980: AI Winter. NN approaches discredited. Symbolic approaches do not deliver.

1980: Expert systems (rules+knowledge) deployed in a number of applications
1985: NNs rediscovered; backpropagation with hidden layers
1990: NNs out of fashion (hard limits on data and computing)
1995: Principled (statistical) approaches to Machine Learning
1997: IBM's *Deep Blue* beats Garry Kasparov at chess (brute force)
2015: Microsoft's *deep rectified model* exceeds human accuracy in classifying images
2016: Google's *AlphaGo* beats Lee Sedol at Go



[Off-printed from MIND: a Quarterly Review of Psychology and Philosophy. Vol. LIX., N.S., No. 236, October, 1950.]

#### COMPUTING MACHINERY AND INTELLIGENCE

BY A. M. TURING

#### 1. The Instation Game.

I PROPOSE to consider the question, 'Can machines think ?' This should begin with definitions of the meaning of the terms 'machine 'and 'think'. The definitions might be framed so as to reflect so far as possible the normal use of the words, but this attitude is dangerous. If the meaning of the words 'machine' and 'think 'are to be found by examining how they are commonly used it is difficult to escape the conclusion that the meaning and the answer to the question, 'Can machines think ?' is to be sought in a statistical survey such as a Gallup poll. But this is absurd. Instead of attempting such a definition I shall replace the question by another, which is closely related to it and is expressed in relatively unambiguous words.

The new form of the problem can be described in terms of a game which we call the 'imitation game'. It is played with three people, a man (A), a woman (B), and an intercogator (C) who may be of either sex. The intercogator stays in a room apart from the other two. The object of the game for the intercogator is to determine which of the other two is the man and which is the woman. He knows them by labels X and Y, and at the end of the game he says either 'X is A and Y is B ' or 'X is B and Y is A'. The intercogator is allowed to put questions to A and B thus :

C: Will X please tell me the length of his or her hair ? Now suppose X is actually A, then A must answer. It is A's 433

### **Career opportunities**



In **established companies** that are building the next generation of **intelligence** and **language understanding** for their products, for example:

- intelligent personal assistants
- opinion mining systems
- customer support system
- biomedical applications
- computer games
- smart adaptive devices
- robots
- smart planning systems

# In **Research** and **Academy**, working on advancing fundamental theories and applications alike

In **your own startup**, a chance to create new product categories

- significant amounts of venture capital available
- unexplored market opportunities
- acquisition, merge, hiring, or growth

#### In consulting for companies or public bodies

- significant lack of in-house AI expertise
- Al will have a transformative impact on any type of business
- setting public policies, informing decision-making

In legal, economics, ethics, arts, humanities...

• think at the impact of mobile. It's like that.



#### First year

| Semester 1                                                     | с | Semester 2                                             | с |
|----------------------------------------------------------------|---|--------------------------------------------------------|---|
| Artificial intelligence<br>fundamentals                        | 6 | Human language<br>technologies                         | 9 |
| Computational<br>mathematics for learning<br>and data analysis | 9 | Parallel and distributed systems: paradigms and models | 9 |
| Machine learning                                               | 9 | Intelligent Systems for<br>pattern recognition         | 6 |
| Elective                                                       | 6 | Elective                                               | 9 |

| Semester 3         | с | Semester 4 | С  |
|--------------------|---|------------|----|
| Smart applications | 9 | Thesis     | 24 |
| Elective           | 9 | Elective   | 6  |
| Free choice        | 9 |            |    |



| First year                                                     | Cocond year                                                                                                                                                                                                                                                            |             |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Semester 1                                                     | c Classical Al                                                                                                                                                                                                                                                         | emester 4 C |
| Artificial intelligence <                                      | <ul> <li>Symbolic approaches to Al</li> <li>Search, exploration, planning</li> <li>Constraint satisfaction systems</li> </ul>                                                                                                                                          | 24<br>6     |
| Computational<br>mathematics for learning<br>and data analysis | <ul> <li>Parallel a<br/>systems:<br/>models</li> <li>Uncertain and probabilistic reasoning         <ul> <li>non-standard logics</li> <li>Semantic networks and description logics</li> <li>Rules systems and their efficient<br/>implementation</li> </ul> </li> </ul> |             |
| Machine learning                                               | 9 Intelligent s pattern recognition                                                                                                                                                                                                                                    |             |
| Elective                                                       | 6 <i>Elective</i> 9                                                                                                                                                                                                                                                    |             |



#### First year

| Semester 1                   | с | Semester 2        | С      |        | Semester 3                     | С        | Semester 4  | С  |
|------------------------------|---|-------------------|--------|--------|--------------------------------|----------|-------------|----|
| Artificial intelligence      | 6 | Human language    | 9      | 1      | Smart applications             | 9        | Thesis      | 24 |
| fundamentals                 |   | technologies Math | ema    | atica  | al concepts and                | tools    | for AI      | 6  |
| Computational                | 9 | Para              |        |        |                                |          |             |    |
| mathematics for learning $<$ |   | •                 | Nume   | erical | analysis and optimi            | zation   |             |    |
| and data analysis            |   | models            | Statis | tics,  | approximation, fittin sessions |          |             |    |
| Machine learning             | 9 | Intelligent Syste | 0      | stud   | ents will apply and t          | est tecl | hniques and |    |
|                              |   | pattern recogni   |        | •      | rithms in lab setting          |          |             |    |
|                              |   |                   | 0      | MAT    | LAB and other softw            | ware to  | ols         |    |
| Elective                     | 6 | Elective          |        |        |                                |          |             |    |
|                              |   |                   |        |        |                                |          |             | /  |
| 1                            |   |                   |        |        |                                |          |             |    |



#### First year

| Semester 1               | с | s          | Мас | cł |
|--------------------------|---|------------|-----|----|
| Artificial intelligence  | 6 | Human Ia   | •   |    |
| fundamentals             |   | technolog  | •   | (  |
| Computational            | 9 | Parallel a | •   |    |
| mathematics for learning |   | systems:   | •   |    |
| and data analysis        |   | mod        | •   |    |
|                          |   |            | •   | ì  |
| Machine learning         |   |            | •   |    |
|                          |   | pattern re |     | ١  |
|                          |   |            |     |    |
| Elective                 | 6 | Elective   |     |    |
|                          |   |            |     |    |

### Machines that learn

- Principles and paradigms in learning from data
- Building adaptive intelligent systems
- Developing predictive models
- Neural networks, in several flavours
- Probabilistic models

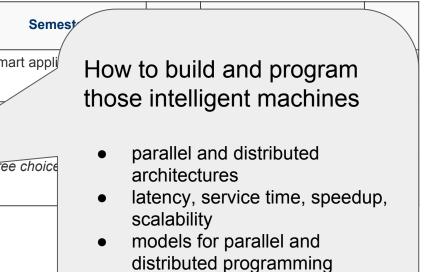
9

- Support Vector Machines and kernel-based models
- Statistical learning theory and model validation

| emester 4 | с  |
|-----------|----|
|           | 24 |
|           | 6  |
|           |    |

#### First year

| Semester 1                                                     | с | Semester 2                                             |   |
|----------------------------------------------------------------|---|--------------------------------------------------------|---|
| Artificial intelligence<br>fundamentals                        | 6 | Human language<br>technologies                         |   |
| Computational<br>mathematics for learning<br>and data analysis | 9 | Parallel and distributed systems: paradigms and models | 9 |
| Machine learning                                               | 9 | Intelligent Systems for<br>pattern recognition         | 6 |
| Elective                                                       | 6 | Elective                                               | 9 |


Machines that read, write, listen and speak

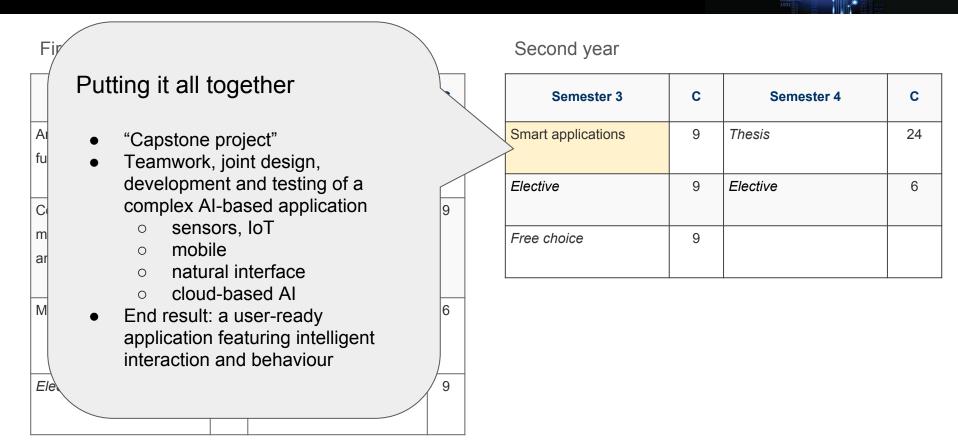
- Principles, models and state-of-the-art in natural language analysis
- Statistical ML, deep learning
- NL essentials: tokenization, morphology, POS-tagging, parsing, etc.
- Semantics: lexical, distributional
- Applications: entity recognition, linking, classification, summarization, opinion mining, sentiment analysis
- Question answering, language inference, dialogic interfaces, machine translation
- NLP libraries: NLP, Theano, Tensorflow



#### First year

| Semester 1                                                     | С | Semester 2                                             | с | Seme        | est                                                        |
|----------------------------------------------------------------|---|--------------------------------------------------------|---|-------------|------------------------------------------------------------|
| Artificial intelligence<br>fundamentals                        | 6 | Human language<br>technologies                         | 9 | Smart appli | How to those in                                            |
| Computational<br>mathematics for learning<br>and data analysis | 9 | Parallel and distributed systems: paradigms and models | 9 | Free choice | <ul> <li>para<br/>arch</li> <li>later<br/>scala</li> </ul> |
| Machine learning                                               | 9 | Intelligent Systems for pattern recognition            | 6 |             | <ul> <li>mod<br/>distr</li> <li>desi</li> </ul>            |
| Elective                                                       | 6 | Elective                                               | 9 |             | • Fast                                                     |




- design patterns
- Fastflow, optimizations



#### First year

| <b>J</b>                                                       |   | <ul> <li>Signal process</li> </ul>                             | ssina a            | and time series                                                                     |         |
|----------------------------------------------------------------|---|----------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------|---------|
| Semester 1                                                     | c |                                                                | ssing,             | visual feature detectors                                                            | с       |
| Artificial intelligence<br>fundamentals                        | 6 | <ul> <li>Neural network</li> <li>physiol</li> </ul>            | orks for<br>ogical | r non-vectorial data<br>data, sensor streams, etc.<br>e methods for relational data | 24<br>6 |
| Computational<br>mathematics for learning<br>and data analysis | 9 | <ul> <li>Applications</li> <li>machines</li> <li>no</li> </ul> |                    | on, bio-informatics, robotics, medical imaging tools                                |         |
| Machine learning                                               | 9 | Intelligent Systems for pattern recognition                    | 6                  |                                                                                     |         |
| Elective                                                       | 6 | Elective                                                       | 9                  |                                                                                     |         |

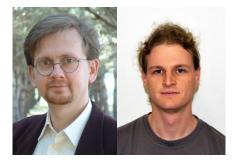
Sentient AI: patterns, signal, and image processing



| Artificial inte<br>fundamenta<br>fundamenta<br>Computatio<br>mathematic<br>and data an | rithm e<br>minin<br>le anc<br><u>6 CF</u><br>matior<br>putatio<br>al and<br>nology | engineering (KD)<br>Ig (KD)<br>I cyber-physical systems (ICT<br><u>FU</u><br>n retrieval (KD)<br>onal neuroscience (ENG)<br>ethical issues in computer | Γ) |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                                                                        |                                                                                    | pattern recognition                                                                                                                                    |    |
| Elective                                                                               | 6                                                                                  | Elective                                                                                                                                               | 9  |

| Semester 3         | с | Semester 4 | с  |
|--------------------|---|------------|----|
| Smart applications | 9 | Thesis     | 24 |
| Elective           | 9 | Elective   | 6  |
| Free choice        | 9 |            |    |

### People


















Maria Simi Alessio Micheli Davide Bacciu Marco Danelutto Antonio Frangioni & Federico Poloni Giuseppe Attardi Vincenzo Gervasi